Зеленые серные бактерии являются неподвижными ( за исключением Chloroherpeton thalassium, который может скользить) и способные аноксигенный фотосинтез . В отличие от растений зеленые серные бактерии в основном используют сульфид-ионы в качестве доноров электронов.
Это автотрофы, которые используют обратный цикл трикарбоновых кислот для фиксации углерода . Зеленые серные бактерии были обнаружены на глубине до 145 м в Черном море при низкой доступности света.
Эти зеленые серные бактерии ( Chlorobiaceae ) представляют собой семейство из облигатно анаэробных фотоавтотрофных бактерий . Вместе с нефотосинтетическими Ignavibacteriaceae они образуют филюмChlorobi.
Согласно новой классификации, пурпурные и зеленые бактерии объединяются в порядок Rhodospirillales, включающий два подпорядка: Rhodospirillindeae и Chlorobiineae. Первый из них представляет пурпурных, а второй зеленых бактерий. Такое подразделение основано на определенных различиях в составе хлорофиллов, образуемых этими микроорганизмами, и коррелирует с другими их свойствами.
Подпорядок Rhodospirillineae состоит из двух семейств: Rhodospirillaceae и Chromatiaceae. Семейство Rhodospirillaceae объединяет микроорганизмы, широко известные под названием несерных пурпурных бактерий, а семейство Chromatiaceae — микроорганизмы, называемые пурпурными серными бактериями или пурпурными серобактериями. Это деление основано на некоторых различиях их физиологических свойств, в первую очередь на отношении к сероводороду.
Подпорядок Chlorobiineae представлен пока одним семейством — Chlorobiaceae. Эти микроорганизмы обычно называют зелеными серными бактериями или зелеными серобактериями. Подобно пурпурным серобактериям все представители данного семейства способны окислять сероводород. Лишь недавно выделены зеленые бактерии (Chloroflexis), для которых потребность в сероводороде и других восстановленных соединениях серы не установлена. Поэтому к семейству Chlorobiaceae их отнести нельзя.
На основании главным образом морфологических признаков каждое из семейств фототрофных бактерий подразделяется на ряд родов. Основы такой классификации были заложены еще в 1888 г. С. Н. Виноградским и с некоторыми изменениями сохранились до настоящего времени.
Семейство Chlorobiaceae — зеленые серобактерии, насчитывает 5 родов и 9 видов. Наиболее известны представители рода Chlorobium, к которому относят 4 вида и две разновидности (С. limicola, С. limicola forma thiosulfatophilum, С. vibrioforme, С. vibrioforme forma thiosulfatophilum, C. phaeobacteroides, С phaeovibrioides).
Это неподвижные палочки или вибриоидные формы размером 0,3-0,8 × 1,0-3,0 мкм. Такой организм, как С. limicola, часто образует цепочки клеток. Для зеленых бактерий рода Pelodictyon (P. clathratiforme, P. luteolum) показана способность к образованию агрегатов клеток, которые у P. clathratiforme имеют форму сетчатых структур. Отдельные клетки овальные или палочковидные и способны к ветвлению.
Бактерии, отнесенные к роду Prosthecochloris (P. aestuarii), отличаются тем, что клетки их имеют выросты (простеки), но по физиологическим свойствам похожи на Chlorobium. Наличие длинных выростов характерно также для зеленых бактерий, выделенных в особый род Ancalochloris (A. perfilievii). P. aestuarii и A. perfilievii впервые описаны В. М. Горленко. Последний род зеленых серобактерий представлен мало исследованным организмом Clathrachloris sulfurica, который наблюдали только в природном материале и в накопительных культурах.
Следует также отметить, что к подпорядку Chlorobiineae сейчас относят и такие микроорганизмы, как Chloroflexis. Известно два штамма этих бактерий: F-1 и F-2. Видовые названия еще не даны.
Зелёные серобактерии (лат. Chlorobiaceae ) — семейство облигатно анаэробных (более строгих, чем пурпурные бактерии, в присутствии O2 не растут) фотолитоавтотрофных грамотрицательных бактерий, использующих сероводород (H2S), водород (H2) и элементарную серу (S 0 ) в качестве доноров электронов. По происхождению они принадлежат к надтипу Bacteroidetes-Chlorobi, однако неоднородны и потому их классифицируют как отдельный тип.
Клетки палочковидные, яйцеобразные, слегка изогнутые, в форме сферы или спиральные. При выращивании в чистой культуре часто образуют цепочки, клубки или сетчатые структуры. В качестве запасного вещества накапливают гликоген. Группа достаточно однородна по нуклеотидному составу ДНК: молярное содержание ГЦ-оснований колеблется от 48 до 58 %. Зелёные серобактерии неподвижны (за исключением Chloroherpeton thalassium, который может передвигаться путём бактериального скольжения), однако обладают газовыми вакуолями. Фотосинтез происходит с использованием бактериохлорофиллов c, d или e, служащих вспомогательными пигментами к бактериохлорофиллу a, а также каротиноидов алициклического типа.
Большая часть вспомогательных хлорофиллов, локализовано в хлоросомах — покрытых белковой оболочкой органеллах, закреплённых на внутренней стороне цитоплазматической мембраны клетки при помощи базальной пластинки. Основной источник углерода — углекислота. Эти бактерии используют сульфиды, водород или, в редких случаях, ионы железа как донор электрона; фотосинтез происходит с помощью реакционного центра I типа, сходного по строению с фотосистемой I, и комплекса Фенна-Мэтьюса-Ольсона. В отличие от них, клетки растений в качестве донора электронов используют воду и образуют кислород. Большая часть видов — мезофилы и нейтрофилы, ряд форм относится к галотолерантным.
Окисление сульфида, происходящее в периплазматическом пространстве, на первом этапе приводит к образованию молекулярной серы, откладывающейся вне клетки. После исчерпания H2S из среды, S 0 поглощается клетками и в периплазматическом пространстве окисляется до сульфата. Изучение локализации процесса образования молекулярной серы у разных групп фототрофных и хемотрофных H2S-окисляющих эубактерий привело к заключению о его однотипности. Во всех случаях сера образуется в клеточном периплазматическом пространстве, но у одних организмов она потом выделяется в среду (зелёные несерные бактерии), у других остаётся в пределах клетки.
Виды зелёных серобактерий были найдены в воде около чёрных курильщиков, на территории тихоокеанского побережья Мексики, на глубине до 2 500 м. На этой глубине, куда не попадает солнечный свет, бактерии, обозначенные GSB1, живут исключительно за счёт тусклого свечения гидротермального источника.
Зелёные серобактерии также обнаружены в Озере Матано, Индонезия, на глубине приблизительно 110—120 метров. Популяция, возможно, содержит виды Chlorobium ferrooxidans.
Зелёные серобактерии редко образуют скопления. Они растут в илах в зоне хемоклина под слоем пурпурных бактерий. С глубиной зелёные виды замещаются коричневыми. Для них характерно образование консорциумов на основе синтрофии по сероводороду.
Способность использования зелёными серобактериями органических соединений ограничена несколькими сахарами, аминокислотами и органическими кислотами. Ни в одном случае органические соединения не могут служить донорами электронов или основным источником углерода. Их использование возможно только при наличии в среде H2S и CO2. Для некоторых зелёных серобактерий показана способность к фиксации N2, остальные в качестве источника азота предпочитают ионы аммония.
Необычной особенностью группы является доказанное наличие восстановительного цикла трикарбоновых кислот, или цикла Арнона (D. Arnon), вместо обычного цикла Кальвина. В этом цикле углекислый газ фиксируется всего в ходе ферментативных реакциях, две из которых идут при участии фотохимически восстановленного ферредоксина, а одна — таким же путём образованного НАДН. В результате одного оборота цикла из трёх молекул СО2 и 12Н + с использованием энергии пяти молекул АТФ синтезируется молекула триозофосфата. Имеется незамкнутый ЦТК без глиоксилатного шунта. Большинство способны сами синтезировать все необходимы для жизни вещества, но некоторые нуждаются в витамине B12.
Зелёные серобактерии способны к аноксигенному фотосинтезу. Из переносчиков электронов у них обнаружены цитохромы с и b, а также менахиноны. Синтез восстановительных эквивалентов осуществляется за счёт электронов окисленной серы, которые поступают в цикл при помощи фермента тиосульфатредуктазы, который окисляет тиосульфат и восстанавливает цитохром с. По отношению к интенсивности света делятся на две группы: первая требует высокой освещённости, а вторая способна существовать на глубинах до 80 м и более при очень слабом освещении.
Chlorobium tepidum из этой группы, используется как модельный организм. На данный момент секвенирован геном десяти представителей группы, что вполне достаточно для характеризации биоразнообразия всего семейства. Эти геномы имеют размеры в 2—3 Mbp и кодируют 1750—2800 генов, 1400—1500 из которых общие для всех штаммов. У этих бактерий отсутствуют двухкомпонентные гистидин-киназы и регуляторные гены, что предполагает ограниченную фенотипическую пластичность и неспособность быстро приспосабливаться к быстро меняющимся условиям среды. Незначительная зависимость этих бактерий от белков-транспортеров органических веществ и факторов транскрипции также указывает на адаптированность этих организмов к узкой экологической нише с ограниченными источниками энергии, подобно цианобактериям Prochlorococcus и Synechococcus.
Частые вопросы
Каково описание зелёных серобактерий?
Зелёные серобактерии – это группа фотосинтезирующих бактерий, которые содержат хлорофилл и выполняют процесс фотосинтеза. Они обладают зелёным цветом благодаря хлорофиллу и могут быть найдены в различных водоемах и почве.
Каков жизненный цикл зелёных серобактерий?
Жизненный цикл зелёных серобактерий включает фотосинтез, размножение путем деления и образование спор. Они могут существовать в различных условиях, включая как анаэробные, так и аэробные среды.
Каково значение зелёных серобактерий?
Зелёные серобактерии играют важную роль в экосистеме, поскольку они являются одними из основных производителей органического вещества через фотосинтез. Они также способствуют биологическому фиксации азота и могут быть использованы в области биотехнологии и экологического очищения воды.
Полезные советы
СОВЕТ №1
Изучите основные характеристики зелёных серобактерий, такие как их морфология, физиология и экология, чтобы понять их значение в природе.
СОВЕТ №2
Изучите жизненный цикл зелёных серобактерий, включая их размножение, образование спор и влияние на окружающую среду, чтобы понять их роль в экосистемах.